Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; : e202400027, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588020

RESUMO

An in-depth investigation was conducted on a promising composite material (BiVO4/TiO2), focusing on its potential toxicity, photoinduced catalytic properties, as well as its antibiofilm and antimicrobial functionalities. The preparation process involved the synthesis of 2D-TiO2 using the lyophilization method, which was subsequently functionalized with sphere-like BiVO4. Finally, we developed BiVO4/TiO2 S-scheme heterojunctions which can greatly promote the separation of electron-hole pairs to achieve high photocatalytic performance. The evaluation of concentration- and time-dependent viability inhibition was performed on human lung carcinoma epithelial A549 cells. This assessment included the estimation of glutathione levels and mitochondrial dehydrogenase activity. Significantly, the BiVO4/TiO2 composite demonstrated minimal toxicity towards A549 cells. Impressively, the BiVO4/TiO2 composite exhibited notable photocatalytic performance in the degradation of rhodamine B (k =0.135 min-1) and phenol (k = 0.016 min-1). In terms of photoinduced antimicrobial performance, the composite effectively inactivated both gram-negative E. coli and gram-positive E. faecalis bacteria upon 60-min of UV-A light exposure, resulting in a significant log6(log10CFU/mL) reduction in bacterial count. These promising results can be attributed to the unique 2D morphology of TiO2 modified by sphere-like BiVO4, leading to an increased generation of (intracellular)hydroxyl radicals, which plays a crucial role in treatments of both organic pollutants and bacteria.

2.
ACS Appl Mater Interfaces ; 16(5): 5627-5636, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38275195

RESUMO

This work aims to investigate the chemical and/or structural modification of Ti and Ti-6Al-4V (TiAlV) alloy surfaces to possess even more favorable properties toward cell growth. These modifications were achieved by (i) growing TiO2 nanotube layers on these substrates by anodization, (ii) surface coating by ultrathin TiO2 atomic layer deposition (ALD), or (iii) by the combination of both. In particular, an ultrathin TiO2 coating, achieved by 1 cycle of TiO2 ALD, was intended to shade the impurities of F- and V-based species in tested materials while preserving the original structure and morphology. The cell growth on TiO2-coated and uncoated TiO2 nanotube layers, Ti foils, and TiAlV alloy foils were compared after incubation for up to 72 h. For evaluation of the biocompatibility of tested materials, cell lines of different tissue origin, including predominantly MG-63 osteoblastic cells, were used. For all tested nanomaterials, adding an ultrathin TiO2 coating improved the growth of MG-63 cells and other cell lines compared with the non-TiO2-coated counterparts. Here, the presented approach of ultrathin TiO2 coating could be used potentially for improving implants, especially in terms of shading problematic F- and V-based species in TiO2 nanotube layers.


Assuntos
Nanoestruturas , Titânio , Teste de Materiais , Titânio/farmacologia , Titânio/química , Nanoestruturas/química , Ligas/farmacologia , Ligas/química
3.
Arch Toxicol ; 97(11): 2943-2954, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37639014

RESUMO

Acetaminophen (APAP) belong among the most used analgesics and antipyretics. It is structurally derived from p-aminophenol (PAP), a potent inducer of kidney toxicity. Both compounds can be metabolized to oxidation products and conjugated with glutathione. The glutathione-conjugates can be cleaved to provide cysteine conjugates considered as generally nontoxic. The aim of the present report was to synthesize and to purify both APAP- and PAP-cysteine conjugates and, as the first study at all, to evaluate their biological effects in human kidney HK-2 cells in comparison to parent compounds. HK-2 cells were treated with tested compounds (0-1000 µM) for up to 24 h. Cell viability, glutathione levels, ROS production and mitochondrial function were determined. After 24 h, we found that both APAP- and PAP-cysteine conjugates (1 mM) were capable to induce harmful cellular damage observed as a decrease of glutathione levels to 10% and 0%, respectively, compared to control cells. In addition, we detected the disappearance of mitochondrial membrane potential in these cells. In the case of PAP-cysteine, the extent of cellular impairment was comparable to that induced by PAP at similar doses. On the other hand, 1 mM APAP-cysteine induced even larger damage of HK-2 cells compared to 1 mM APAP after 6 or 24 h. We conclude that cysteine conjugates with aminophenol are potent inducers of oxidative stress causing significant injury in kidney cells. Thus, the harmful effects cysteine-aminophenolic conjugates ought to be considered in the description of APAP or PAP toxicity.


Assuntos
Acetaminofen , Aminofenóis , Humanos , Aminofenóis/toxicidade , Acetaminofen/toxicidade , Cisteína , Rim , Glutationa
4.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390508

RESUMO

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , 17-Hidroxiesteroide Desidrogenases , Encéfalo/metabolismo , Inibidores Enzimáticos/química
5.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298087

RESUMO

Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/uso terapêutico , Neuroblastoma/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Monoaminoxidase/metabolismo , Desenho de Fármacos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
6.
Environ Technol ; 44(9): 1322-1333, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34710003

RESUMO

Manganese is naturally present in water, but its increased concentration in potable water is undesirable for multiple reasons. This study investigates an alternative method of demanganization by a newly synthesized TiO2-based adsorbent prepared through the transformation of titanyl sulphate monohydrate to amorphous sodium titanate. Its adsorption capacity for Mn2+ was determined, while a range of influential factors, such as the effect of contact time, adsorbent dosage, pH value, and added ions was evaluated. The adsorbent appeared highly effective for Mn2+ removal owing to its unique characteristics. Besides adsorption via electrostatic interactions, ion-exchange was also involved in the Mn2+ removal. Although the Mn2+ removal occurred within the whole investigated pH range of 4-8, the maximum was achieved at pH 7, with qe = 73.83 mg g-1. Equilibrium data revealed a good correlation with Langmuir isotherm in the absence of any ions or in the presence of monovalent co-existing ions, while the results in the presence of divalent co-existing ions showed a better fit to Freundlich isotherm. Additionally, the presence of monovalent cations (Na+, K+) only slightly decreased the Mn2+ removal efficiency as compared to divalent cations (Ca2+, Mg2+) that caused a greater decrease; however, the effect of anions (Cl-, SO42-) was insignificant. To provide insight into the adsorbent safety, the toxicity assessment was performed and showed no harmful effect on cell activity. Furthermore, the residual concentration of titanium after adsorption was always below the detection limit. The results imply that the synthesized TiO2-based adsorbent is a safe promising alternative method for demanganization.Highlights The synthesis of amorphous TiO2-based adsorbent was presented.The TiO2-based adsorbent was found to be efficient for Mn2+ removal.The Mn2+ removal mechanisms were adsorption and ion-exchange.Increasing pH enhanced the efficiency of Mn2+ removal.Divalent cations decreased the Mn2+ removal efficiency more than monovalent cations.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Manganês , Adsorção , Cátions Bivalentes , Íons , Cátions Monovalentes , Concentração de Íons de Hidrogênio , Cinética , Poluentes Químicos da Água/análise , Purificação da Água/métodos
7.
Int J Nanomedicine ; 17: 4211-4225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124012

RESUMO

Purpose: Titanium dioxide nanoparticles, 25 nm in size of crystallites (TiO2 P25), are among the most produced nanomaterials worldwide. The broad use of TiO2 P25 in material science has implied a request to evaluate their biological effects, especially in the lungs. Hence, the pulmonary A549 cell line has been used to estimate the effects of TiO2 P25. However, the reports have provided dissimilar results on caused toxicity. Surprisingly, the physicochemical factors influencing TiO2 P25 action in biological models have not been evaluated in most reports. Thus, the objective of the present study is to characterize the preparation of TiO2 P25 for biological testing in A549 cells and to evaluate their biological effects. Methods: We determined the size and crystallinity of TiO2 P25. We used four techniques for TiO2 P25 dispersion. We estimated the colloid stability of TiO2 P25 in distilled water, isotonic NaCl solution, and cell culture medium. We applied the optimal dispersion conditions for testing the biological effects of TiO2 P25 (0-100 µg.mL-1) in A549 cells using biochemical assays (dehydrogenase activity, glutathione levels) and microscopy. Results: We found that the use of fetal bovine serum in culture medium is essential to maintain sufficient colloid stability of dispersed TiO2 P25. Under these conditions, TiO2 P25 were unable to induce a significant impairment of A549 cells according to the results of biochemical and microscopy evaluations. When the defined parameters for the use of TiO2 P25 in A549 cells were met, similar results on the biological effects of TiO2 P25 were obtained in two independent cell laboratories. Conclusion: We optimized the experimental conditions of TiO2 P25 preparation for toxicity testing in A549 cells. The results presented here on TiO2 P25-induced cellular effects are reproducible. Therefore, our results can be helpful for other researchers using TiO2 P25 as a reference material.


Assuntos
Nanopartículas , Soroalbumina Bovina , Células A549 , Glutationa , Humanos , Pulmão , Nanopartículas Metálicas , Nanopartículas/química , Oxirredutases , Cloreto de Sódio , Titânio , Água
8.
Food Chem Toxicol ; 168: 113355, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35952821

RESUMO

Melanins belong to a group of pigments of different structure and origin. They can be produced synthetically or isolated from living organisms. A number of studies have reported testing of various melanins in neurological studies providing different outcomes. Because the structure of melanins can have an effect on obtained results in cell toxicity studies, we present here our original study which aimed to compare the biological effects of bacterial melanin (biotechnologically obtained from B. thuringiensis) with that of synthetic melanin in neuroblastoma cells. Both melanins were structurally characterized in detail. After melanin treatment (0-200 µg/mL), cell viability, glutathione levels, cell morphology and respiration were assessed in SH-SY5Y cells. The structural analysis showed that bacterial melanin is more hydrophilic according to the presence of larger number of -OH moieties. After melanin treatment, we found that synthetic melanin at similar dosage caused always larger cell impairment compared to bacterial melanin. In addition, more severe toxic effect of synthetic melanin was found in mitochondria. In general, we conclude that more hydrophilic, bacterial melanin induced lower toxicity in neuroblastoma cells in comparison to synthetic melanin. Our findings can be useable for neuroscientific studies estimating the potential use for study of neuroprotection, neuromodulation or neurotoxicity.


Assuntos
Melaninas , Neuroblastoma , Bactérias , Glutationa , Humanos , Mitocôndrias , Neuroblastoma/tratamento farmacológico
9.
J Chromatogr A ; 1669: 462956, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35306469

RESUMO

Acetaminophen (paracetamol, APAP) is one of the most widely used drugs worldwide. Unfortunately, its overdose, which is caused by predominant oxidation of APAP, can lead to acute liver injury. In liver, oxidized APAP is conjugated with glutathione, leading to APAP-glutathione conjugate, which is metabolized to APAP-cysteine and APAP-N-acetylcysteine conjugates. Thus, all of those compounds could be used to monitor APAP metabolism in the overdosed patients. To date, only a limited number of rapid and accurate methods have been reported for the assessment of APAP oxidation metabolites using simple instrumentation, and thus this work was aimed at developing a fast and convenient gradient HPLC-UV/MS method. For this purpose, APAP conjugates with glutathione, cysteine, and N-acetylcysteine were synthesized, purified by preparative liquid chromatography, and characterized by NMR and high-resolution mass spectrometry. The gradient elution conditions were optimized using the window diagram approach and the effects of mobile phase composition and additives on separation and detection sensitivity were evaluated using two, i.e., linear and non-linear isocratic retention models. Quantitative parameters of the developed method were evaluated and the effectiveness, sensitivity, and specificity of the method were demonstrated on the analysis of human kidney HK-2 cell lysates, confirming the suitability of the method for routine use in studies on APAP toxicity.


Assuntos
Acetaminofen , Cromatografia de Fase Reversa , Acetilcisteína , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida/métodos , Humanos
11.
Molecules ; 26(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34443297

RESUMO

The potential of nanomaterials use is huge, especially in fields such as medicine or industry. Due to widespread use of nanomaterials, their cytotoxicity and involvement in cellular pathways ought to be evaluated in detail. Nanomaterials can induce the production of a number of substances in cells, including reactive oxygen species (ROS), participating in physiological and pathological cellular processes. These highly reactive substances include: superoxide, singlet oxygen, hydroxyl radical, and hydrogen peroxide. For overall assessment, there are a number of fluorescent probes in particular that are very specific and selective for given ROS. In addition, due to the involvement of ROS in a number of cellular signaling pathways, understanding the principle of ROS production induced by nanomaterials is very important. For defense, the cells have a number of reparative and especially antioxidant mechanisms. One of the most potent antioxidants is a tripeptide glutathione. Thus, the glutathione depletion can be a characteristic manifestation of harmful effects caused by the prooxidative-acting of nanomaterials in cells. For these reasons, here we would like to provide a review on the current knowledge of ROS-mediated cellular nanotoxicity manifesting as glutathione depletion, including an overview of approaches for the detection of ROS levels in cells.


Assuntos
Células/metabolismo , Glutationa/metabolismo , Nanoestruturas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Células/efeitos dos fármacos , Humanos , Transdução de Sinais/efeitos dos fármacos
12.
Sci Rep ; 11(1): 11921, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099803

RESUMO

At present, nuclear condensation and fragmentation have been estimated also using Hoechst probes in fluorescence microscopy and flow cytometry. However, none of the methods used the Hoechst probes for quantitative spectrofluorometric assessment. Therefore, the aim of the present study was to develop a spectrofluorometric assay for detection of nuclear condensation and fragmentation in the intact cells. We used human hepatoma HepG2 and renal HK-2 cells cultured in 96-well plates treated with potent apoptotic inducers (i.e. cisplatin, staurosporine, camptothecin) for 6-48 h. Afterwards, the cells were incubated with Hoechst 33258 (2 µg/mL) and the increase of fluorescence after binding of the dye to DNA was measured. The developed spectrofluorometric assay was capable to detect nuclear changes caused by all tested apoptotic inducers. Then, we compared the outcomes of the spectrofluorometric assay with other methods detecting cell impairment and apoptosis (i.e. WST-1 and glutathione tests, TUNEL, DNA ladder, caspase activity, PARP-1 and JNKs expressions). We found that our developed spectrofluorometric assay provided results of the same sensitivity as the TUNEL assay but with the advantages of being fast processing, low-cost and a high throughput. Because nuclear condensation and fragmentation can be typical markers of cell death, especially in apoptosis, we suppose that the spectrofluorometric assay could become a routinely used method for characterizing cell death processes.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Espectrometria de Fluorescência/métodos , Bisbenzimidazol/química , Camptotecina/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Núcleo Celular/metabolismo , Cisplatino/farmacologia , Citometria de Fluxo/métodos , Células Hep G2 , Humanos , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Estaurosporina/farmacologia
13.
Chem Res Toxicol ; 34(3): 699-703, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33566584

RESUMO

Oxime cholinesterase reactivators (oximes) are used to counteract organophosphate intoxication. Charged oximes are administered via intramuscular or intravenous injection when the majority of dose is unmetabolized and is excreted as urine. In this study, the effects of selected double charged oximes were determined in the HK-2 cell line as a model for renal toxicity screening. Some effects on dehydrogenase activity were found for obidoxime, asoxime (syn. HI-6), K027, and K203. The effects of K868 and K869 were found to be unreliable due to rapid degradation of both chlorinated oximes in the assay medium, resulting for K868 in an isoxazole-pyridinium product.


Assuntos
Reativadores da Colinesterase/efeitos adversos , Rim/efeitos dos fármacos , Oximas/efeitos adversos , Linhagem Celular , Reativadores da Colinesterase/administração & dosagem , Reativadores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Rim/metabolismo , Estrutura Molecular , Oximas/administração & dosagem , Oximas/química
14.
Eur J Med Chem ; 211: 113112, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33360800

RESUMO

Alzheimer's disease is a progressive brain disorder with characteristic symptoms and several pathological hallmarks. The concept of "one drug, one target" has not generated any new drugs since 2004. The new era of drug development in the field of AD builds upon rationally designed multi-target directed ligands that can better address the complexity of AD. Herewith, we designed ten novel derivatives of 2-propargylamino-naphthoquinone. The biological evaluation of these compounds includes inhibition of monoamine oxidase A/B, inhibition of amyloid-beta aggregation, radical-scavenging, and metal-chelating properties. Some of the compounds possess low cytotoxicity profile with an anti-inflammatory ability in the lipopolysaccharide-stimulated cellular model. All these features warrant their further testing in the field of AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Naftoquinonas/uso terapêutico , Desenho de Fármacos , Humanos , Naftoquinonas/farmacologia , Relação Estrutura-Atividade
15.
ACS Appl Bio Mater ; 3(9): 6447-6456, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021776

RESUMO

The present work exploits Ti sheets and TiO2 nanotube (TNT) layers and their surface modifications for the proliferation of different cells. Ti sheets with a native oxide layer, Ti sheets with a crystalline thermal oxide layer, and two kinds of TNT layers (prepared via electrochemical anodization) with a defined inner diameter of 12 and 15 nm were used as substrates. A part of the Ti sheets and the TNT layers was additionally coated by thin TiO2 coatings using atomic layer deposition (ALD). An increase in cell growth of WI-38 fibroblasts (>50%), MG-63 osteoblasts (>30%), and SH-SY5Y neuroblasts (>30%) was observed for all materials coated by five cycles ALD compared to their uncoated counterparts. The additional ALD TiO2 coatings changed the surface composition of all materials but preserved their original structure and protected them from unwanted crystallization and shape changes. The presented approach of mild surface modification by ALD has a significant effect on the materials' biocompatibility and is promising toward application in implant materials.

16.
Mol Biol Rep ; 45(5): 1469-1478, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30022463

RESUMO

Apoptosis has been recognized as a type of programmed cell death connected with characteristic morphological and biochemical changes in cells. This programmed cell death plays an important role in the genesis of a number of physiological and pathological processes. Thus, it can be very important to detect the signs of apoptosis in a study of cellular metabolism. The present paper provides an overview of methods often being used for detecting DNA fragmentation as one of the most specific findings in apoptosis. To date, three routine assays have been developed for detecting DNA fragmentation: DNA ladder assay, TUNEL assay, and comet assay. All these methods differ in their principles for detecting DNA fragmentation. DNA ladder assay detects the characteristic "DNA ladder" pattern formed during internucleosomal cleavage of DNA. Terminal deoxynUcleotidyl transferase Nick-End Labeling (TUNEL) assay detects DNA strand breaks using terminal deoxynucleotidyl transferase catalyzing attachment of modified deoxynucleotides on the DNA strand breaks. Comet assay can be used for detecting nucleus breakdown producing single/double-strand DNA breaks. The aim of this review is to describe the present knowledge on these three methods, including optimized approaches, techniques, and limitations.


Assuntos
Apoptose/fisiologia , Ensaio Cometa/métodos , Fragmentação do DNA , Marcação In Situ das Extremidades Cortadas/métodos , Animais , Apoptose/genética , Bioensaio/métodos , DNA/análise , DNA/genética , DNA/metabolismo , Humanos
17.
J Pharmacol Toxicol Methods ; 88(Pt 1): 40-45, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28642085

RESUMO

Fluorometric glutathione assays have been generally preferred for their high specificity and sensitivity. An additional advantage offered by fluorescent bimane dyes is their ability to penetrate inside the cell. Their ability to react with glutathione within intact cells is frequently useful in flow cytometry and microscopy. Hence, the aims of our study were to use monochlorobimane for optimizing a spectrofluorometric glutathione assay in cells and then to compare that assay with the frequently used ortho-phthalaldehyde assay. We used glutathione-depleting agents (e.g., cisplatin and diethylmalonate) to induce cell impairment. For glutathione assessment, monochlorobimane (40µM) was added to cells and fluorescence was detected at 394/490nm. In addition to the regularly used calculation of glutathione levels from fluorescence change after 60min, we used an optimized calculation from the linear part of the fluorescence curve after 10min of measurement. We found that 10min treatment of cells with monochlorobimane is sufficient for evaluating cellular glutathione concentration and provides results entirely comparable with those from the standard ortho-phthalaldehyde assay. In contrast, the results obtained by the standardly used evaluation after 60min of monochlorobimane treatment provided higher glutathione values. We conclude that measuring glutathione using monochlorobimane with the here-described optimized evaluation of fluorescence signal could be a simple and useful method for routine and rapid assessment of glutathione within intact cells in large numbers of samples.


Assuntos
Bioensaio/métodos , Corantes Fluorescentes/química , Glutationa/análise , Pirazóis/química , Espectrometria de Fluorescência/métodos , o-Ftalaldeído/química , Bioensaio/economia , Linhagem Celular , Cisplatino/toxicidade , Estudos de Viabilidade , Citometria de Fluxo , Glutationa/metabolismo , Humanos , Malonatos/toxicidade , Sensibilidade e Especificidade , Espectrometria de Fluorescência/economia
18.
Toxicol In Vitro ; 39: 52-57, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888128

RESUMO

Neutrophil gelatinase-associated lipocalin is an extracellular protein produced mostly in kidney. Recently, it has become a promising biomarker of renal damage in vivo. On the other hand, the validation of NGAL as a biomarker for nephrotoxicity estimation in vitro has not been characterized in detail yet. Since the HK-2 cells are frequently used human kidney cell line, we aimed to characterize the production of NGAL in these cells and to evaluate NGAL as a possible marker of cell impairment. We used heavy metals (mercury, cadmium), peroxide, drugs (acetaminophen, gentamicin) and cisplatin to mimic nephrotoxicity. HK-2 cells were incubated with selected compounds for 1-24h and cell viability was measured together with extracellular NGAL production. We proved that HK-2 cells possess a capacity to produce NGAL in amount of 2pg/ml/h. We found a change in cell viability after 24h incubation with all tested toxic compounds. The largest decrease of the viability was detected in mercury, acetaminophen, cisplatin and gentamicin. Unexpectedly, we found also a significant decrease in NGAL production in HK-2 cells treated with these toxins for 24h: to 11±5%, 54±5%, 57±6% and 76±9% respectively, compared with controls (=100%). Our results were followed with qPCR analysis when we found no significant increase in LCN2 gene expression after 24h incubation. We conclude that extracellular NGAL production negatively correlates with HK-2 cell impairment.


Assuntos
Injúria Renal Aguda/metabolismo , Lipocalina-2/metabolismo , Acetaminofen/toxicidade , Injúria Renal Aguda/induzido quimicamente , Biomarcadores/metabolismo , Cádmio/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/toxicidade , Gentamicinas/toxicidade , Humanos , Lipocalina-2/genética , Mercúrio/toxicidade , terc-Butil Hidroperóxido/toxicidade
19.
J Sep Sci ; 39(4): 799-807, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26644024

RESUMO

Mass spectrometry coupled with bioaffinity separation techniques is considered a powerful tool for studying protein interactions. This work is focused on epitope analysis of tau protein, which contains two VQIXXK aggregation motifs regarded as crucial elements in the formation of paired helical filaments, the main pathological characteristics of Alzheimer's disease. To identify major immunogenic structures, the epitope extraction technique utilizing protein fragmentation and magnetic microparticles functionalized with specific antibodies was applied. However, the natural adhesiveness of some newly generated peptide fragments devalued the experimental results. Beside presumed peptide fragment specific to applied monoclonal anti-tau antibodies, the epitope extraction repeatedly revealed inter alia tryptic fragment 299-HVPGGGSVQIVYKPVDLSK-317 containing the fibril-forming motif 306-VQIVYK-311. The tryptic fragment pro-aggregation and hydrophobic properties that might contribute to adsorption phenomenon were examined by Thioflavin S and reversed-phase chromatography. Several conventional approaches to reduce the non-specific fragment sorption onto the magnetic particle surface were performed, however with no effect. To avoid methodological complications, we introduced an innovative approach based on altered proteolytic digestion. Simultaneous fragmentation of tau protein by two immobilized proteases differing in the cleavage specificity (TPCK-trypsin and α-chymotrypsin) led to the disruption of motif responsible for undesirable adhesiveness and enabled us to obtain undistorted structural data.


Assuntos
Doença de Alzheimer/diagnóstico , Biomarcadores/química , Proteínas tau/química , Adesividade , Adsorção , Motivos de Aminoácidos , Anticorpos Monoclonais/química , Benzotiazóis , Quimotripsina/química , Epitopos/química , Humanos , Magnetismo , Espectrometria de Massas/métodos , Proteólise , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tiazóis/química , Tripsina/química
20.
Oxid Med Cell Longev ; 2014: 752506, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24847414

RESUMO

Oxidative stress and mitochondrial dysfunction play an important role in the pathogenesis of nonalcoholic fatty liver disease and toxic liver injury. The present study was designed to evaluate the effect of exogenous inducer of oxidative stress (tert-butyl hydroperoxide, tBHP) on nonfatty and steatotic hepatocytes isolated from the liver of rats fed by standard and high-fat diet, respectively. In control steatotic hepatocytes, we found higher generation of ROS, increased lipoperoxidation, an altered redox state of glutathione, and decreased ADP-stimulated respiration using NADH-linked substrates, as compared to intact lean hepatocytes. Fatty hepatocytes exposed to tBHP exert more severe damage, lower reduced glutathione to total glutathione ratio, and higher formation of ROS and production of malondialdehyde and are more susceptible to tBHP-induced decrease in mitochondrial membrane potential. Respiratory control ratio of complex I was significantly reduced by tBHP in both lean and steatotic hepatocytes, but reduction in NADH-dependent state 3 respiration was more severe in fatty cells. In summary, our results collectively indicate that steatotic rat hepatocytes occur under conditions of enhanced oxidative stress and are more sensitive to the exogenous source of oxidative injury. This confirms the hypothesis of steatosis being the first hit sensitizing hepatocytes to further damage.


Assuntos
Hepatócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , terc-Butil Hidroperóxido/toxicidade , Animais , Células Cultivadas , Dieta Hiperlipídica , Glutationa/metabolismo , Hepatócitos/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...